

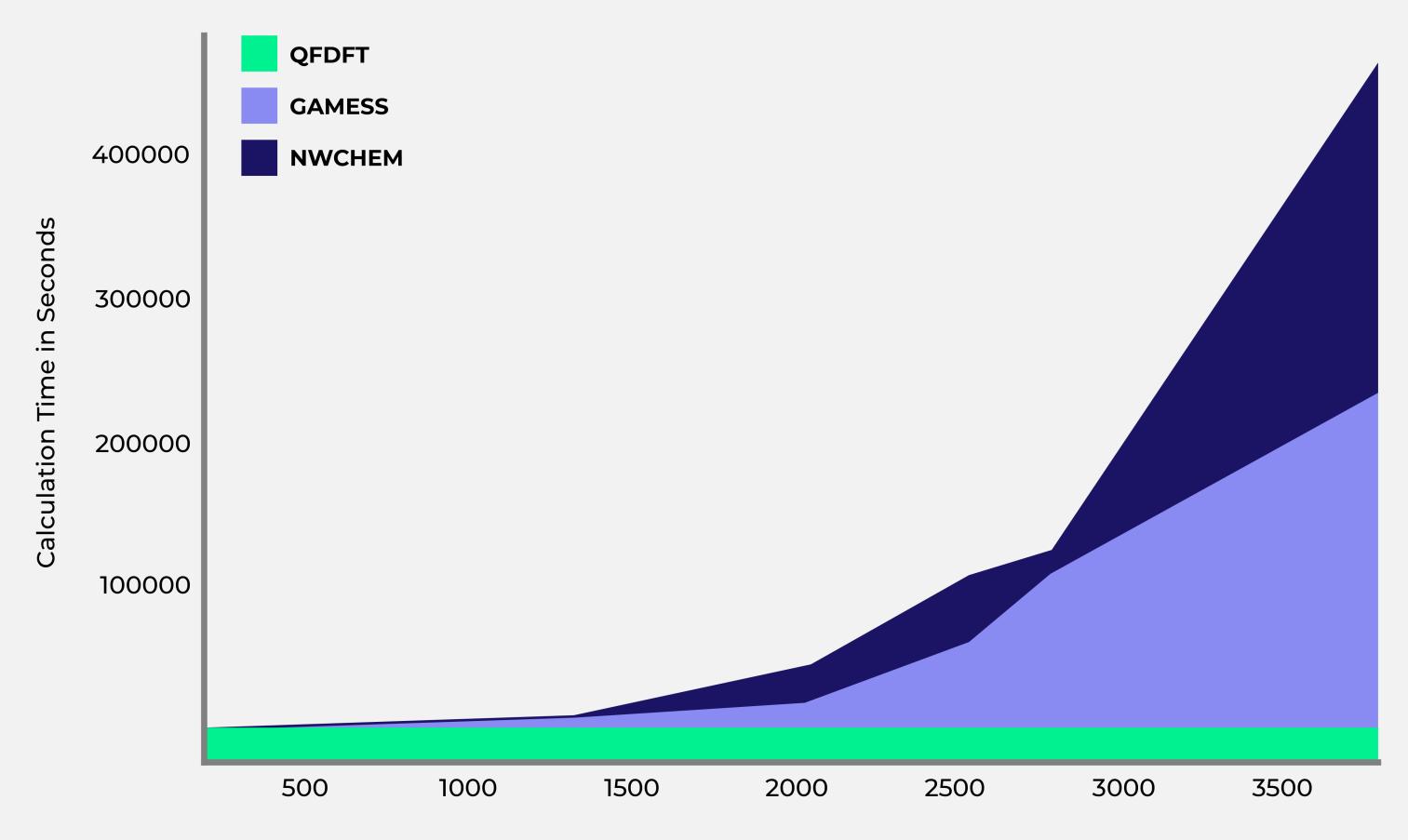
HIGH PERFORMANCE DFT USING TRADITIONAL GAUSSIAN BASIS SETS FOR THE 21ST CENTURY'S COMPUTATIONAL DRUG DESIGNS, FORCE FIELDS AND AI DEVELOPMENTS

- New QFC method for linear scaling Coulomb solution
- New QFX method with advanced DFT atomic grid technology
- Modern and extremely efficient C++ implementation
- Same accuracy as traditional all electron DFT programs
- -Implementation of Grimme's D4 dispersion corrections
- Improved D4 accuracy via new fitting scheme for basis set-functional pairs
- Extraordinary speed on ordinary CPUs and by keeping full double precision accuracy

QUICK POINTS

- Extremely fast DFT energy and force calculations with accurate basis sets and XC numerical grids
- Implementation of Grimme's D4 dispersion corrections
- More accurate D4 dispersion corrections for practical basis sets by optimizing parameters for functional-basis set pairs (see VDW-D4-Remarks.pdf for details)
- Support of using external fields via point charges
- Geometry optimizations including options to freeze atoms, bonds, angles, torsion angles
- Continuum solvation model via semiempirical QM
- Native Linux version as well as docker image
- Convenient and fair usage based licensing scheme
- Molecular Dipoles
- Atomic distributed multipoles
- EEQ Charges

BETA FEATURES


- Charge density, electrostatic potentials, HOMO, LUMO etc. on cube-like grids for visualizations
- Maybe other atomic properties
- Maybe vibrations and thermodynamic properties

For more information, please take a look at our release notes

COMING SOON

Comparative Study Visual

Number of Basis Functions

Our commercial DFT code with license fee is cheaper than using free software!

If you use freely available quantum chemistry code like NWCHEM, GAMESS US or PSI4 then take a look at this realistic cost analysis using real word examples!

Cost comparisons of a month-long ab initio DFT project using QFDFT with assumptions of:

- 1. Buying a capable Intel Xeon based node with 64 physical cores for \$12,000 and using it for 5 years
- 2. The electricity usage is about 600W with an additional 600W for cooling
- 3. The electricity cost in the USA is about \$0.12/kWh and about \$0.39/kWh in Germany (DE in the table below)
- 4. The QFDFT code is 20 times faster than those free programs (This is a very conservative assumption)
- 5. We have a facility for the computers and hardware and software maintenance is done for free

Hardware Cost/month
Electricity Cost/month
License Fee/month
Total Cost/month
Total Project Cost
Results After

Using Free DFT Code	Using QFDFT
~\$200	~\$200
~\$100 (US), ~\$350 (DE)	~\$100 (US), ~\$350 (DE)
\$0	~\$700
~\$300 (US), ~\$550 (DE)	~\$1,000 (US), ~\$1,250 (DE)
\$6,000 (US), \$11,000 (DE)	\$1,000 (US), \$1,250 (DE)
20 months	1 month

Cost comparisons of a month-long ab initio DFT project with QFDFT with assumptions of:

- 1. Renting a capable Intel Xeon based node with 64 physical cores for \$5/hour on Amazon EC2
- 2. The QFDFT code is 20 times faster than those free programs (This is a very conservative assumption)
- 3. No need for computer rooms and no need for any hardware and software maintenace

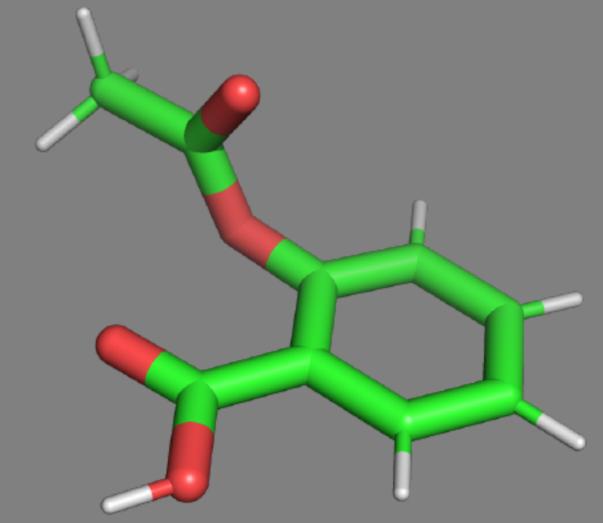
	Using Free DFT Code	Using QFDFT
On-Demand Cost/month	~\$3,600	~\$3,600
License Fee/month	\$ O	~\$700
Total Cost/month	~\$3,600	~\$4,300
Total Project Cost	\$72,000	\$4,300

Energy 12 seconds

QM semiempirical optimization + Energy

ptimization + Energy 14 seconds

QM semiempirical opt + DFT-D4 opt + Energy


110 seconds

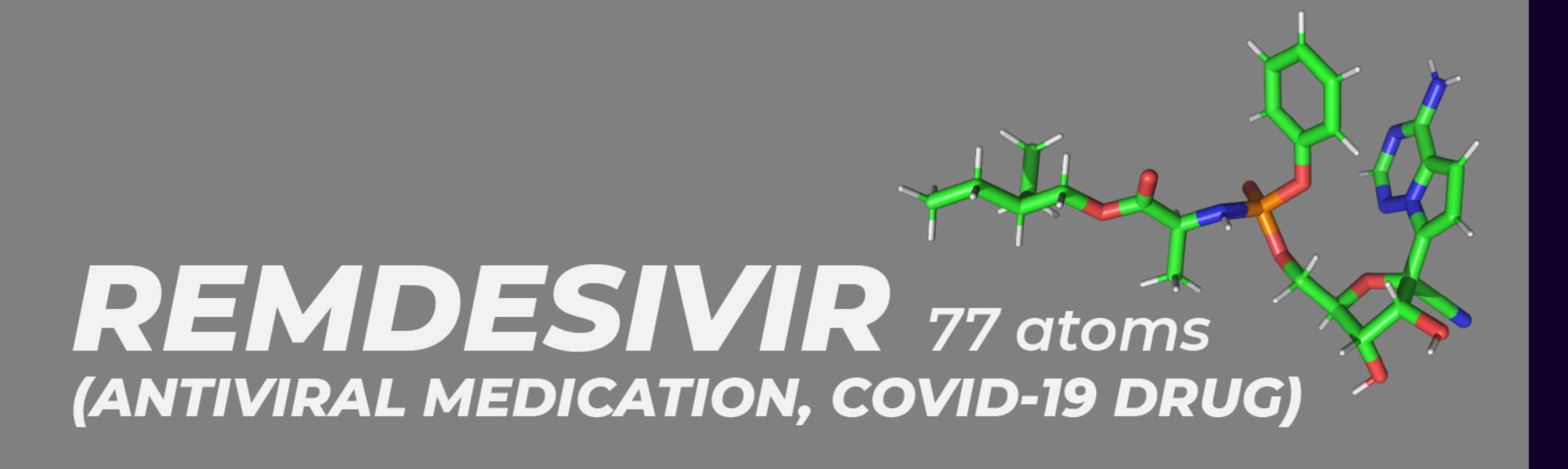
Comparative Study

Energy Calculations		Gradients		
QFTDFT	GAMESS	NWCHEM	QFTDFT	GAMESS
17	129	240	3	27

(Timings in seconds on an 18-core Intel i9, DFT, dev2-SVPD, TPSS)

Energy 87 seconds

QM semiempirical optimization + Energy 94 seconds


QM semiempirical opt + DFT-D4 opt + Energy

1,438 seconds

Comparative Study

Energy Calculations		Gradients		
QFTDFT	GAMESS	NWCHEM	QFTDFT	GAMESS
131	7,213	6,534	26	1,104

(Timings in seconds on an 18-core Intel i9, DFT, dev2-SVPD, TPSS)

Energy 189 seconds

QM semiempirical optimization + Energy 244 seconds

QM semiempirical opt + DFT-D4 opt + Energy

2,502 seconds

Comparative Study

Energy Calculations		Gradients		
QFTDFT	GAMESS	NWCHEM	QFTDFT	GAMESS
272	18,588	42,673	50	5,044

(Timings in seconds on an 18-core Intel i9, DFT, dev2-SVPD, TPSS)

Energy 310 seconds

QM semiempirical optimization + Energy 356 seconds

QM semiempirical opt + DFT-D4 opt + Energy

3,425 seconds

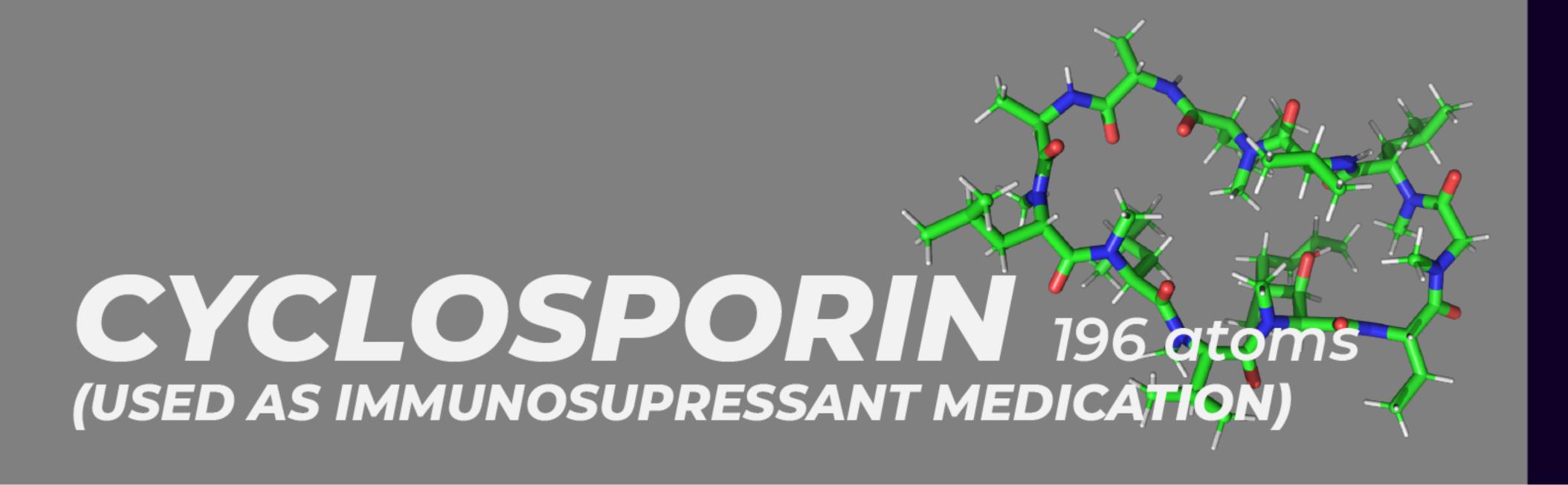
Comparative Study

Energy Calculations		Gradients		
QFTDFT	GAMESS	NWCHEM	QFTDFT	GAMESS
526	61,490	104,402	113	9,924

(Timings in seconds on an 18-core Intel i9, DFT, dev2-SVPD, TPSS)

Energy 385 seconds

QM semiempirical optimization + Energy 432 seconds


QM semiempirical opt + DFT-D4 opt + Energy

5,544 seconds

Comparative Study

Energy Calculations		Gradients		
QFTDFT	GAMESS	NWCHEM	QFTDFT	GAMESS
805	109,263	120,779	163	13,792

(Timings in seconds on an 18-core Intel i9, DFT, dev2-SVPD, TPSS)

Energy 705 seconds

QM semiempirical optimization + Energy

QM semiempirical opt +

DFT-D4 opt + Energy

Comparative Study

Energy Calculations		Gradients		
QFTDFT	GAMESS	NWCHEM	QFTDFT	GAMESS
1,025	232,893	461,391	243	31586

(Timings in seconds on an 18-core Intel i9, DFT, dev2-SVPD, TPSS)

987 seconds

5,975 seconds

